A Bit More Detail

Assorted Personal Notations, Essays, and Other Jottings

[LINK] On the possible extensive water oceans of early Mars

The New York Times‘ Marc Kaufman reported on the controversial new suggestion, described in the new Science paper “Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs”.

After six years of planetary observations, scientists at NASA say they have found convincing new evidence that ancient Mars had an ocean.

It was probably the size of the Arctic Ocean, larger than previously estimated, the researchers reported on Thursday. The body of water spread across the low-lying plain of the planet’s northern hemisphere for millions of years, they said.

If confirmed, the findings would add significantly to scientists’ understanding of the planet’s history and lend new weight to the view that ancient Mars had everything needed for life to emerge.

“The existence of a northern ocean has been debated for decades, but this is the first time we have such a strong collection of data from around the globe,” said Michael Mumma, principal investigator at NASA’s Goddard Center for Astrobiology and an author of the report, published in the journal Science. “Our results tell us there had to be a northern ocean.”

But other experts said the question was hardly resolved. The ocean remains “a hypothesis,” said Ashwin Vasavada, project scientist of the Curiosity rover mission at the Jet Propulsion Laboratory in Pasadena, Calif.

The Guardian‘s Ian Sample explained the scientists’ methodology.

The scientists used the Keck II telescope and Nasa’s Infrared Telescope Facility, both in Hawaii, and the ESO’s Very Large Telescope in Chile, to make maps of the Martian atmosphere over six years. They looked specifically at how different forms of water molecules in the Martian air varied from place to place over the changing seasons.

Martian water, like that on Earth, contains standard water molecules, made from two hydrogen atoms and one oxygen atom, and another form of water made with a heavy isotope of hydrogen called deuterium. On Mars, water containing normal hydrogen is lost to space over time, but the heavier form is left behind.

When normal water is lost on Mars, the concentration of deuterium in water left behind goes up. The process can be used to infer how much water there used to be on the planet. The higher the concentration of deuterium, the more water has been lost.

The infrared maps show that water near the Martian ice caps is enriched with deuterium. The high concentration means that Mars must have lost a vast amount of water in the past, equivalent to more than six times that now locked up in the planet’s frozen ice caps.

The scientists calculate that the amount of water was enough to create a global ocean that covered the entire surface of Mars to a depth of 137m. But Mars was probably never completely submerged. Based on the Martian terrain today, the scientists believe the water pooled into a much deeper ocean in the low-lying northern plains, creating an ocean that covered nearly a fifth of the planet’s surface. The Atlantic, by comparison, covers about 17% of Earth’s surface.

“Ultimately we can conclude this idea of an ocean covering 20% of the planet which opens the idea of habitability and the evolution of life on the planet,” said Geronimo Villanueva, the first author on the study.

The Vastitas Borealis, the deep and level northern-hemispheric plain, has long been thought of as a possible ancient ocean bed.

The science can be challenged on multiple grounds. For example, are scientists correct in their judgement of Mars’ ancient hydrogen/deuterium ratios? It could go either way if they are wrong. Regardless, this has implications for ancient–and even current?–life on the Red Planet.

Written by Randy McDonald

March 5, 2015 at 11:17 pm

%d bloggers like this: